Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychopharmacology (Berl) ; 237(6): 1827-1840, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32206827

RESUMO

RATIONALE: Alcoholism and obesity impart a deleterious impact on human health and affects the quality of life. Chronic consumption of alcohol and western diet has been reported to cause memory deficits. 7,8-dihydroxyflavone (7,8-DHF), a TrkB agonist, comprises antioxidant and anti-inflammatory properties in treating various neurological disorders. OBJECTIVES: The current study was aimed to determine the protective effect and molecular mechanism of 7,8-DHF against alcohol and high-fat diet (HFD)-induced memory deficits in rats. METHODS: The adult male Wistar rats were given alcohol (3-15%) and HFD ad libitum for 12 weeks in different experimental groups. 7,8-DHF (5 mg/kg) was intraperitoneally injected daily for the last 4 weeks (9th-12th week). RESULTS: The alcohol and HFD administration caused cognitive impairment as evaluated through the Morris water maze (MWM) test in alcohol, HFD, and alcohol + HFD-fed animals. The last 4-week treatment of 7,8-DHF (5 mg/kg; i.p.) attenuated alcohol and HFD-induced memory loss. 7,8-DHF treatment also restored the glutathione (GSH) level along with attenuation of nitrite, malondialdehyde content (markers of oxidative and nitrosative stress), and reduction of the acetylcholinesterase activity in the hippocampus of alcohol and HFD-fed animals. Furthermore, the administration of 7,8-DHF caused downregulation of NF-κB, iNOS, and caspase-3 and upregulation of Nrf2, HO-1, and BDNF mRNA level in rat hippocampus. CONCLUSION: 7,8-DHF administration conferred beneficial effects against alcohol and HFD-induced memory deficit via its unique antioxidant, anti-inflammatory, anti-apoptotic potential, along with the activation of TrkB/BDNF signaling pathway in the hippocampus.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Etanol/toxicidade , Flavonas/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Etanol/administração & dosagem , Flavonas/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Estresse Nitrosativo/fisiologia , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar
2.
Psychopharmacology (Berl) ; 236(2): 741-752, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30426184

RESUMO

BACKGROUND: Fisetin, a plant active polyphenol, is well known for its antioxidant and free radical scavenging activities. The present study was designed to explore the detailed molecular mechanism underlying its neuroprotective effects. METHODS: The young male mice were either administered a single dose of lipopolysaccharide (0.83 mg/kg) or subjected to restraint stress (6 h per day for 28 days) to induce behavioral deficits in different groups. Fisetin (15 mg/kg) was orally administered for the last 14 days of the study. RESULTS: Lipopolysaccharide (LPS) as well as restraint stress (RS) exposure caused behavioral alterations (anxiety and depressive-like behavior). Gene expression analysis showed upregulation of nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) and indoleamine 2,3-dioxygenase (IDO)-1 gene expression along with downregulation of Nrf-2 (nuclear factor erythroid 2-related factor 2), HO-1 (heme oxygenase-1), and ChAT (choline acetyltransferase) gene expression level in RS and RS+LPS groups. Fisetin administration significantly ameliorated behavioral and neurochemical deficits in LPS, RS, and RS+LPS groups. CONCLUSION: These findings clearly indicated that fisetin administration improved behavioral functions and suppressed the NF-κB and IDO-1 (indoleamine 2,3-dioxygenase) activation along with their antioxidant effect, suggesting fisetin as an intriguing nutraceutical for the management of inflammation-associated neurological disorders.


Assuntos
Flavonoides/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , Aprendizagem em Labirinto/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Estresse Psicológico/psicologia , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Flavonoides/uso terapêutico , Flavonóis , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/psicologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , NF-kappa B/metabolismo , Restrição Física , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo
3.
Biomed Pharmacother ; 108: 1393-1403, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30372842

RESUMO

Modern sedentary lifestyle with altered dietary habits imposes the risk of human health towards several metabolic disorders such as obesity. The metabolic insults negatively affect the mental health status and quality life of affected individuals. Melatonin is a potent antioxidant with anti-inflammatory and neuroprotective properties. The aim of the present study was to investigate the protective effect of melatonin on the cognitive and neurochemical deficits induced by the high-fat diet (HFD) and alcohol (ALC) alone or in combination (HFD + ALC) in rats. Male Wistar rats were given ALC (3-15% i.e. increased gradually) and HFD for 12 weeks in different experimental groups. After 12 weeks, we found that simultaneous consumption of HFD and ALC exacerbates cognitive dysfunction and neurochemical anomalies. However, melatonin (10 mg/kg/day, i.p.) treatment for four weeks significantly prevented memory deficits, oxidative stress and neuroinflammation in HFD, ALC and HFD + ALC groups. RT-PCR analysis showed down-regulation of nuclear factor erythroid 2-related factor 2 (Nrf-2) and heme oxygenase-1 (HO-1) in ALC and HFD + ALC groups. Moreover, caspase-3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) mRNA expression level were found up-regulated in hippocampus of HFD, ALC and HFD + ALC groups. However, calpain expression was found up-regulated only in the hippocampus of HFD + ALC group. Chronic treatment with melatonin significantly restored the aberrant gene expression level in HFD, ALC and HFD + ALC group. In conclusion, our findings indicated that melatonin can mitigate the HFD and ALC-induced cognitive deficits via attenuation of oxidative stress and calpain-1 dependent as well as independent caspase-3 mediated neuronal cell death.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Apoptose , Calpaína/fisiologia , Disfunção Cognitiva/etiologia , Dieta Hiperlipídica/efeitos adversos , Hipocampo/patologia , Melatonina/farmacologia , NF-kappa B/fisiologia , Acetilcolinesterase/metabolismo , Animais , Caspase 3/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
4.
Ann Neurosci ; 23(4): 246-260, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27780992

RESUMO

Acute and chronic alcohol exposure evidently influences epigenetic changes, both transiently and permanently, and these changes in turn influence a variety of cells and organ systems throughout the body. Many of the alcohol-induced epigenetic modifications can contribute to cellular adaptations that ultimately lead to behavioral tolerance and alcohol dependence. The persistence of behavioral changes demonstrates that long-lasting changes in gene expression, within particular regions of the brain, may contribute importantly to the addiction phenotype. The research activities over the past years have demonstrated a crucial role of epigenetic mechanisms in causing long lasting and transient changes in the expression of several genes in diverse tissues, including brain. This has stimulated recent research work that is aimed at characterizing the influence of epigenetic regulatory events in mediating the long lasting and transient effects of alcohol abuse on the brain in humans and animal models of alcohol addiction. In this study, we update our current understanding of the impact of alcohol exposure on epigenetic mechanisms in the brain and refurbish the knowledge of epigenetics in the direction of new drugs development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...